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ABSTRACT
In many practical situations, deep neural networks work better than the traditional
“shallow” ones, however, in some cases, the shallow neural networks lead to better
results. At present, deciding which type of neural networks will work better is mostly
done by trial and error. It is therefore desirable to come up with some criterion of
when deep learning is better and when shallow is better. In this paper, we argue that
this depends on whether the corresponding situation has natural symmetries: if it
does, we expect deep learning to work better, otherwise we expect shallow learning
to be more effective. Our general qualitative arguments are strengthened by the fact
that in the simplest case, the connection between symmetries and effectiveness of
deep learning can be theoretically proven.
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1. Formulation of the Problem

Neural networks – general idea: a brief reminder. To design a flying machine,
a natural idea is to look at creatures that fly – and to emulate them, e.g., by placing
wings at the flying machine. Similarly, to have a machine that performs intellectual
operations, a natural idea is to look at how these operations are performed in our
brains.

In a brain, all data processing is performed by special cells called neurons that
process electric signals. Each signal is a sequence of pulses; different information is
conveyed by different frequencies, i.e., different numbers of pulses per second. A neuron
has inputs several signals x1, . . . , xn, and generates an output signal y. In the first
approximation, the output signal has the form

y = s(w1 · x1 + . . .+ wn · xn − w0), (1)

where wi are real numbers and s(z) is a non-linear function called an activation func-
tion.

First, signals coming from our senses are processed by several neurons. Then, the
output signals from these neurons are processed by other neurons, etc. As information
is processed, the weights wi of the neurons are adjusted – this is how we learn.
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This first approximation model is what is usually simulated in computers. The
resulting computer model is known as a artificial neural network, or simply a neural
network, for short.

Traditional (shallow) neural networks.One of the reasons why researchers started
looking at the brain is that for many tasks like learning to recognize faces, humans are
still better – and faster – than the most advanced computer programs. This happens in
spite of the fact that the fastest biological neurons take several milliseconds to produce
the output, while a computer can perform billions of operations per second. The main
advantage of biological neural networks is that they are working in parallel: e.g., while
each neuron participating in processing an image requires a few millisecond, during this
time, millions of neurons perform some data processing, while even in most advanced
high performance computers, we have at most thousands of computers working in
parallel.

Since the main advantage of neural networks is speed, a natural idea is to form arti-
ficial neural networks which are as fast as possible. In general, as we have mentioned,
the signals go through several consecutive stages:

• at first stage, several neurons simultaneously process,
• then, on the second stage, the outputs of these neurons are simultaneously pro-
cessed by yet other neurons, etc.

The more such stages we have, the longer data processing takes. Thus, to speed up
computations, it is necessary to use the smallest possible number of stages.

With a single stage, we only get functions of type (1), and not all functions of several
variables can be represented in this form. So, we need at least two processing stages.
It turned out (see, e.g., [1,2]) that with two layers, we can already approximate any
function with any given accuracy – moreover, we can do it even if on the second layer,
we use the fastest-to-compute linear transformation of the inputs, i.e., if we return a
linear combination

y = W1 · y1 + . . .+WK · yK −W0, (2)

where the values y1, . . . , yK are the results of the first stage of data processing:

yk = s(wk1 · x1 + . . .+ wkn · xn − wk0). (3)

One of the proofs of this results comes from the fact that – as Newton showed with
his prism experiment – every light can be represented as a linear combination of pure
colors – i.e., in mathematical terms, sinusoids. A similar representation as a linear
combination of sinusoids – known as Fourier transform – is possible for any continuous
functions, and this representation has exactly the form (2)-(3), with s(z) = sin(z).

The resulting 2-stage neural networks, with linear second stage, are what is now
called shallow neural networks.

Learning: a general idea. What do biological neural networks do? For example,
they allow us, by looking at a picture, to see if this is a picture of a cat or of a dog.
In this case, the inputs are intensities xi of different pixels of the picture, and the
output y is 0 or 1 depending on whether it is a cat or a dog. In more complicated
cases, when the brain solves a mathematical problem, xi are inputs to this problem
(e.g., two numbers 3 and 4 that we want to add), and y is the desired result (in this
case, 3 + 4 = 7).
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The brain of a newborn baby cannot yet solve any of these problems, it needs to be
trained. Training means that we show a baby different pictures of pets and indicate
which of them are cats and which are dogs. Eventually, the baby learns this.

In precise terms, learning means that we are looking for the parameters wki and
Wk of the neural network for which, on the known examples, the match between the
outputs of the neural network and the desired values is the best. Specifically, we have

several examples p = 1, . . . , P in which we know both the inputs x
(p)
1 , . . . , x

(p)
n and the

desired output y(p). We want to find the values wki and Wk for which the outputs

y
(p)
NN = W1 · y(p)1 + . . .+WK · y(p)K −W0

of the neural network (NN) are close to the desired values y(p), where

y
(p)
k = s

(
wk1 · x

(p)
1 + . . .+ wkn · x(p)n − wk0

)
.

There are efficient algorithm for determining the values wki and Wk, these algorithms
are used in artificial neural networks.

Comment. To be more precise, we split the known examples into training examples
and testing examples, find the weights based only on the training examples, and then
gauge the quality of the result by testing it on the testing examples.

Enter deep learning. In the last decades, it was shown that in many practical
applications, we get a better approximation if we use neural networks with more than
2 stages; see, e.g., [2]. Such neural networks are known as deep.

Sometimes, deep learning is better, sometimes, shallow learning is better.
The more stages we have, the more neurons we will need, and thus, the values of more
parameters we will need to determine based on the data. In many practical situations,
we have only a relatively small number of data points. A good example of such a
situation is the analysis of strong volcanic eruptions: luckily, there are not so many of
them. In such situations, we do not have enough data to train a deep network, so if
we want to use neural networks, shallow ones are our only option.

When we have more data, in principle, we can apply both deep learning and shallow
learning. In many cases, deep learning works better, but in some cases, shallow learning
leads to better results.

Resulting question. At present, there seems to be no good understanding of when
deep learning works better and when shallow learning works better. As a result, now,
the decision on which type of neural network to use is made by time-consuming trial
and error. It is therefore desirable to come up with an understanding of when each of
these techniques is better.

What we do in this paper. In this paper, we make a first step towards answering this
question: namely, we provide a qualitative understanding. On a simplified example,
we show that this qualitative understanding makes sense.

2. Analysis of the Problem: Deep Learning vs. Shallow Learning

Main difference between shallow and deep learning. In both shallow learning
and deep learning, we start with basic computational units (neurons) for which the
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function describing how the unit’s output depends on its inputs takes the form (1).
To get more complex dependencies, we combine these basic functions. From this view-
point, the main difference between shallow and deep learning is in how we combine
them:

• In shallow learning, we have only two data processing layers, with the second
one linear. Thus, we simply take a linear combination (2) of several functions of
type (1).

• In contrast, in deep learning, we have several nonlinear data processing layers.
So, the outputs of nonlinear neurons become inputs to other neurons, i.e., from
mathematical viewpoint, we also consider compositions of nonlinear functions of
type (1).

Indeed, if we first transform the input x into the output y = f1(x) and then use
another unit to transform the resulting signal y into a new signal z = f2(y), then
this procedure transforms the original input x into the value z = f2(f1(x)). In other
words, the function corresponding to two consequent processing stages is exactly the
composition of the functions corresponding to each of these stages.

So when is shallow learning better and when is deep learning better: brain-
storming. As we have mentioned earlier, for some classes of practical problems – i.e.,
in mathematical terms, for some classes of functions that we want to approximate by
neural networks – deep learning works better, while for other classes, shallow learning
works better.

Based on the above description of the difference between shallow and deep learning,
it is reasonable to make the following informal conclusion

• Shallow learning is expected to work better if the corresponding class of functions
F is closed under linear combinations, i.e., if this class F has the property that:

◦ if F contains functions f1(x), . . . , fn(x),
◦ then it should contain all their linear combinations

W1 · f1(x) + . . .+Wn · fn(x).

• In contrast, deep learning is expected to work better if the corresponding class
of functions F is closed under composition, i.e.: if this class F has the property
that:

◦ if F contains functions f1(x) and f2(x),
◦ then it should contain their composition f2(f1(x)).

Let us describe this difference in mathematical terms. In the shallow learning
case, we have classes which are closed under linear combination. These classes are well
known in mathematics, they are called linear spaces.

In the deep learning case, we have classes which are closed under composition.
Such classes are known as transformation semigroups. An important particular case is
transformation groups – they describe the case when all transformations are reversible,
and the inverse transformation also belongs to the same class F .

3. So When Is Deep Learning Better: A General Answer

Our conclusion. Based on the above argument, we can make the following conclusion:
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• if the set of approximated functions is closed under linear combinations – i.e.,
forms a linear space – then, on functions from this class, we expect shallow
learning to work better, and

• if the set of approximated functions is closed under composition – i.e., forms a
transformation semigroup – then, on functions from this class, we expect deep
learning to work better than shallow learning.

Comment. Of course, this is an approximate qualitative conclusion, since deep net-
works also include linear combinations.

Transformation semigroups are ubiquitous. At first glance, the property to be
closed under composition – i.e., to form a transformation semigroup – sounds very
specific. However, in practice, such sets are ubiquitous, and this ubiquity is easy to
explain.

In physics, it is well understood (see, e.g., [3,4]) that transformations play a fun-
damental role in how we gain knowledge. In effect, all our knowledge is based on
appropriate transformations.

Indeed, how do we know that if we drop a pen, it will fall down with acceleration
of 9.81 m/sec2? Someone observed it in one location. Then this person moved to a
different location – i.e., performed a shift x 7→ x+ x0 of his/her coordinates, repeated
the same experiment and got the same result. Then, this person turned around by some
angle, repeated the experiment, and got the same result. This person also repeated this
same experiment at some future moment of time, i.e., at a moment of time obtained
by a shift in time t 7→ t+ t0, and got the same result,

So, this person naturally concluded that the result of this dropping-a-pen experi-
ment does not change if we apply a shift in space, a shift in time, and/or rotation.
In mathematical terms, we say that this phenomenon is invariant or symmetric with
respect to these transformations, and the transformations themselves are called sym-
metries. Since our current situation can be obtained from the original one by some
shifts and rotations, we can therefore predict that if we drop a pen right now, in our
current on-Earth location, it will exhibit the exact same behavior: namely, it will start
falling down with the acceleration 9.81 m/sec2.

In general, how do we know, e.g., that coughing and sneezing are usually symptoms
of flu, cold, or allergy? Because we observed similar situations in the past, and this is
what they turned out to be. And what does “similar” mean? The time is different, the
person may be different, the location may be different – but similar means that we
can perform some transformations like shifts, rotations, renaming people, transforma-
tions with respect to which medical conditions are invariant, and we can get the new
situations – exactly or approximately – from the old ones.

How do we know that a resistor in our lab will follow Ohm’s law? Because this law
was confirmed at different locations at different moments of time, and we thus learned
that this law does not change if we move to a different location at a different moment
of time.

The transformations do not have to be as simple as shifts and rotations. For example,
for many properties, if we replace each particle with its anti-particle – electron with
positron, proton with anti-proton, etc. – we will get the same physical phenomena: e.g.,
positrons will combine with anti-protons to form anti-Hydrogen atoms whose physical
properties will be largely the same as of the usual Hydrogen.

Similarly, if we place a small-size model of an airplane in a wind tunnel, it will
behave the same way as the real-size airplane – this is how airplane designs were
tested before it became possible to run accurate computer simulations.
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In physics, transformations that preserve some properties of the object of study are
known as symmetries. This name comes from the fact that in geometry, e.g., if we
have a set invariant with respect to rotations around an axis – e.g., a round cylinder
– we say that this set is symmetric with respect to this rotation. In physics, the word
“symmetry” is used for general transformations, not necessary geometric one: e.g.,
replacing each particle with the corresponding anti-particle is also called a symmetry.

Our answer reformulated. In view of this, our answer can be reformulated as
follows:

• if there is a symmetry, then deep learning should work better, and
• if there is no symmetry, then shallow learning should work better.

This explain why deep learning is so successful. Since, as we have mentioned,
symmetries are ubiquitous, this explain why areas in which deep learning work better
are also ubiquitous.

4. Let Us Check Our Answer on a Simple Case

Simple case: a description. To check whether our answer to the shallow vs. deep
question makes sense, let us check it on a simple example.

The simplest activation function. To come up with such an example, we need,
among other things, to select a simple non-linear activation function s(x). Since we
are talking about computations, by the simplest, we mean the simplest to compute.
In a computer, in effect, the only hardware supported operations are addition and
multiplication. Any other computation is performed as a sequence of additions and
multiplications. In other words, whatever function we want to compute, what we actu-
ally compute is a composition of additions and multiplications – i.e., a polynomial. For
example, when we ask a computer to compute exp(x), what the computer will actually
compute is the sum of the first few terms of the Taylor series for this function, i.e.,
the expression

1 +
x

1!
+

x2

2!
+ . . .+

xn

n!
.

The simplest polynomials are linear, the next simplest are quadratic. So, the simplest
nonlinear activation function is a quadratic function s(x) = a0 + a1 · x+ a2 · x2.
The simplest deep-learning-type architecture. The main difference between
shallow and deep learning is that in deep learning, outputs from nonlinear neurons
become inputs to other nonlinear neurons. This means that, in deep learning, we need
at least two nonlinear neurons.

From this viewpoint, the simplest deep neural network is when we have two nonlinear
neurons, one processes the input(s), and the other one processes the output of the first
neuron.

The simplest number of inputs. The more inputs, the more complex the situation.
So, the simplest case is when we have a single input.

How the resulting simplest deep neural network looks like. Let us summarize
the above selections. We have a neural network with one input and two neurons each
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of which is described by a quadratic activation function. The output of the first neuron
serves as the input to the second neuron.

Let us describe this in precise terms. The first neuron transforms the input x into
the value y = a0 + a1 · x + a2 · x2, for some coefficients ai. The second neuron then
transforms the resulting signal y into the signal z = b0 + b1 · y + b2 · y2, for some
coefficients bi.

What function is computed by this simplest network. Substituting the expres-
sion for y into the formula for z, we conclude that

z = b2 ·
(
a0 + a1 · x+ a2 · x2

)2
+ b1 ·

(
a0 + a1 · x+ a2 · x2

)
+ b0. (4)

This function is a composition of two quadratic polynomial and is, thus, a polynomial
of 4-th order.

What are the corresponding symmetries. In 1-D space, reasonable geometric
transformations are shifts and reflections with respect to a point.

A function is invariant with respect to a shift x 7→ x+T means that f(x) = f(x+T ),
i.e., that the function is periodic with period T . One can easily check that non-constant
polynomials cannot be periodic. So, since we are considering polynomials, the only
transformation with respect to which a polynomial can be invariant are reflection
with respect to a point a. Reflection means that for each original point x, we take a
new point x′ which is located at the same distance from a as the original point x, but
at the opposite side of the point a. In other words, we have x′ − a = −(x − a), i.e.,
equivalently, x′ = 2a− x.

Main result of this section. For the above example, we get the following result.

Proposition. A 4-th order polynomial can be represented as a composition of two
quadratic polynomials if and only if this polynomial is invariant with respect to some
reflection.

Comment. In other words, a 4-th order polynomial can be computed by the above
simplest deep neural network if and only if this polynomial is symmetric. This is
perfectly in line with what we claimed in the previous section – that deep learning
should work better if there is a symmetry.

Proof of the Proposition.

1◦. Let us first prove that if a 4-th order polynomial z(x) is symmetric with respect
to reflection against some point a, then it can be represented as a composition of two
quadratic functions.

Indeed, let us introduce a new variable t
def
= x− a, for which x = t+ a. In terms of

the new variable, the function z(x) takes the form Z(t)
def
= z(t+a). This function Z(t)

is a 4-th order polynomial, so Z(t) = A0 + A1 · t+ A2 · t2 + A3 · t3 + A4 · t4 for some
coefficients Ai. In terms of t, symmetry z(2a−x) = z(x) takes the form Z(t) = Z(−t)
for all t, i.e.,

A0 +A1 · t+A2 · t2 +A3 · t3 +A4 = A0 −A1 · t+A2 · t2 −A3 · t3 +A4.

If two polynomials are equal, this means that all their coefficients must coincide, so
we must have A1 = A3 = 0, hence Z(t) = A0 +A2 · t2 +A4 · t4 and thus,

z(x) = Z(x− a) = A0 +A2 · (x− a)2 +A4 · (x− a)4,
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i.e., z = A0 +A2 · y +A4 · y2, where

y
def
= (x− a)2 = x2 − 2a · x+ a2.

So, the function z(x) can indeed be represented as a composition z(x) = z(y(x)) of
two quadratic functions z(y) and y(x).

2◦. Let us now prove that if a 4-th order polynomial can be represented as a compo-
sition of two quadratic function, then it is symmetric with respect to some reflection.
Indeed, let’s start with

y = a0 + a1 · x+ a2 · x2

, where a2 ̸= 0. The standard transformation used in deriving the formula for the
solutions of a quadratic equation leads to:

a2

(
x2 +

a1
a2

· x+
a0
a2

)
= a2

((
x+

a1
2 · a2

)2

+
a0
a2

−
(

a1
2 · a2

)2
)
.

So if we take t
def
= x− a, where

a
def
= − a1

2 · a2
,

we get

y = a2

(
t2 +

a0
a2

−
(

a1
2 · a2

)2
)
,

where
a0
a2

−
(

a1
2 · a2

)2

is a constant.

Clearly if we replace t with −t the result y remains the same. Thus, z(y) will also
remain the same.

In terms of x = t + a, the transformation t 7→ −t takes the form x 7→ 2a − x, i.e.,
is reflection against the point a. Thus, the dependence z(x) does not change – i.e., is
symmetric – if we apply this reflection.

The proposition is proven.
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